30 research outputs found

    Assessing the controllability of Arctic sea ice extent by sulfate aerosol geoengineering

    Get PDF
    In an assessment of how Arctic sea ice cover could be remediated in a warming world, we simulated the injection of SO2 into the Arctic stratosphere making annual adjustments to injection rates. We treated one climate model realization as a surrogate “real world” with imperfect “observations” and no rerunning or reference to control simulations. SO2 injection rates were proposed using a novel model predictive control regime which incorporated a second simpler climate model to forecast “optimal” decision pathways. Commencing the simulation in 2018, Arctic sea ice cover was remediated by 2043 and maintained until solar geoengineering was terminated. We found quantifying climate side effects problematic because internal climate variability hampered detection of regional climate changes beyond the Arctic. Nevertheless, through decision maker learning and the accumulation of at least 10 years time series data exploited through an annual review cycle, uncertainties in observations and forcings were successfully managed

    The effect of multitasking on the communication skill and clinical skills of medical students

    Get PDF
    Abstract Background Mental workload is an abstract concept that perceives cognition as the brain having a small and finite capacity to process information, with high levels of workload associated with poor performance and error. While an individual may be able to complete two different tasks individually, a combination of tasks may lead to cognitive overload and poor performance. In many high-risk industries, it is common to measure mental workload and then to redesign tasks until cognitive overload is avoided. This study aimed to measure the effect of multitasking on the mental workload and performance of medical students completing single and combined clinical tasks. Methods Medical students who had completed basic clinical skills training in a single undergraduate Medical School completed four standardised tasks for a total of four minutes each, consisting of: inactivity, listening, venepuncture and a combination of listening and venepuncture. Task performance was measured using standard binary checklists and with mental workload measured using a secondary task method. Results The tasks were successfully completed by 40 subjects and as expected, mental workload increased with task complexity. Combining the two tasks showed no difference in the associated mental workload and performance at venepuncture (p = 0.082) However, during the combined task, listening appeared to deteriorate (p < 0.001). Conclusions If staff are expected to simultaneously complete multiple tasks then they may preferentially shed communication tasks in order to maintain their performance of physical tasks, leading to the appearance of poor communication skills. Although this is a small-scale study in medical students it suggests that the active assessment and management of clinician workload in busy clinical settings may be an effective strategy to improve doctor-patient communication

    Hyperresolution information and hyperresolution ignorance in modelling the hydrology of the land surface

    Get PDF
    There is a strong drive towards hyperresolution earth system models in order to resolve finer scales of motion in the atmosphere. The problem of obtaining more realistic representation of terrestrial fluxes of heat and water, however, is not just a problem of moving to hyperresolution grid scales. It is much more a question of a lack of knowledge about the parameterisation of processes at whatever grid scale is being used for a wider modelling problem. Hyperresolution grid scales cannot alone solve the problem of this hyperresolution ignorance. This paper discusses these issues in more detail with specific reference to land surface parameterisations and flood inundation models. The importance of making local hyperresolution model predictions available for evaluation by local stakeholders is stressed. It is expected that this will be a major driving force for improving model performance in the future. Keith BEVEN, Hannah CLOKE, Florian PAPPENBERGER, Rob LAMB, Neil HUNTE

    Framework for assessing uncertainty in fluvial flood risk mapping

    Get PDF
    This CIRIA guide provides a framework for good practice in the assessment of uncertainty in fluvial flood risk mapping. Uncertainty assessments involve subjective assessments and the framework reveals and makes clear those assessments at each stage of the modelling process. The framework makes explicit what has in the past been kept implicit

    Climate-society feedbacks and the avoidance of dangerous climate change

    No full text
    The growth in anthropogenic CO2 emissions experienced since the onset of the Industrial Revolution is the most important disturbance operating on the Earth’s climate system. To avoid dangerous climate change, future greenhouse-gas emissions will have to deviate from business-as-usual trajectories. This implies that feedback links need to exist between climate change and societal actions. Here, we show that, consciously or otherwise, these feedbacks can be represented by linking global mean temperature change to the growth dynamics of CO2 emissions. We show that the global growth of new renewable sources of energy post-1990 represents a climate–society feedback of ~0.25% yr−1 per degree increase in global mean temperature. We also show that to fulfil the outcomes negotiated in Durban in 2011, society will have to become ~ 50 times more responsive to global mean temperature change than it has been since 1990. If global energy use continues to grow as it has done historically then this would result in amplification of the long-term endogenous rate of decarbonization from −0.6% yr−1 to ~−13% yr−1. It is apparent that modest levels of feedback sensitivity pay large dividends in avoiding climate change but that the marginal return on this effort diminishes rapidly as the required feedback strength increases

    Probabilistic flood risk mapping at confluences

    No full text
    corecore